Sustainability Days 2021 EcoCloud research center, EPFL

Chasing Carbon

Toward a Responsible, Sustainable Ecosystem for Computing

Apple's Aggregated End-to-End Carbon Footprint Breakdown

Integrated Circuit

iOS

Assembly

iPhone, iPad, Apple Watch, Mac, etc.

Manufacturing

Manufacturing

accounts for **74%** of Apple's end-to-end breakdown in 2019

Integrated circuits

account for 33% of emissions (SoCs, DRAM, NAND Flash)

-Business travel
Recycling
Product transport
Other

macOS Active

macOS Idle

Product Use

Product Use

accounts for 19% of emissions

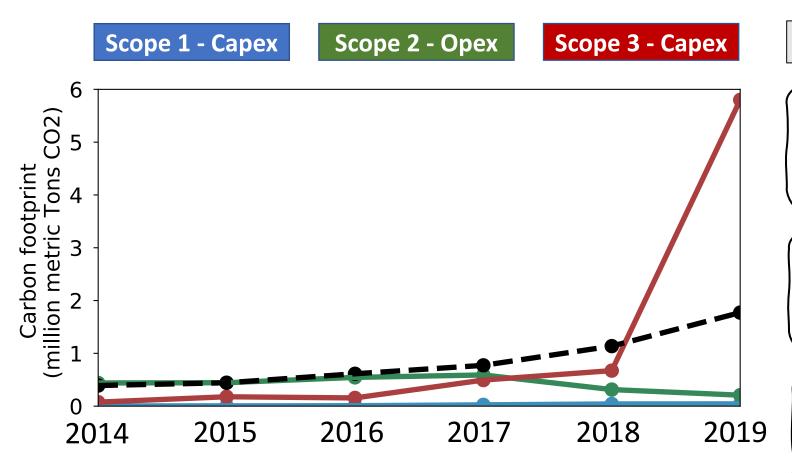
Manufacturing
Capex

End-to-End
Hardware Life
Cycles

Product Use
Opex

Boards & Flexes

Aluminum


Displays

Electronics

Other

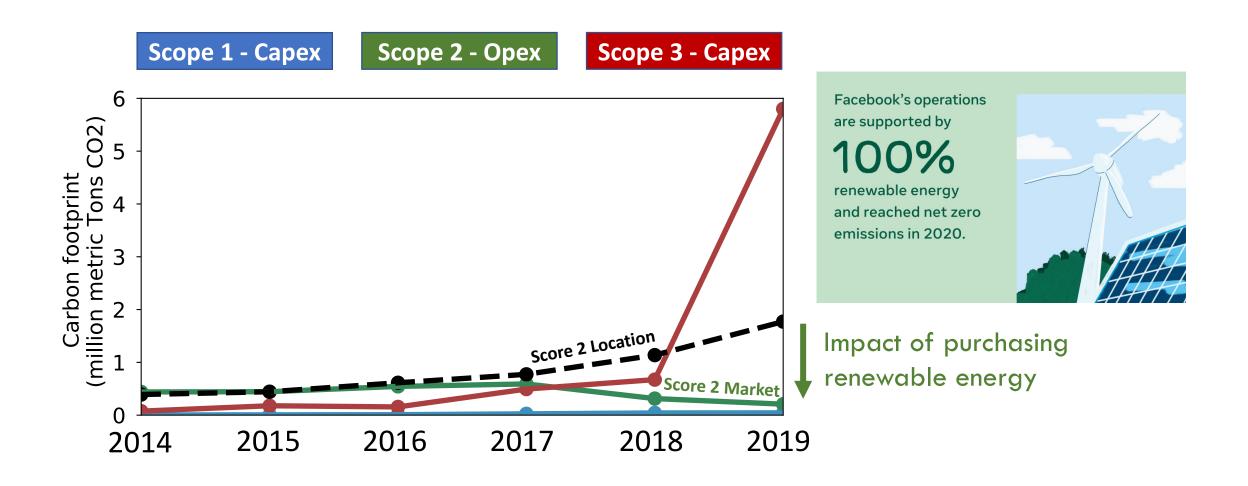
Steel

Facebook Datacenters' Carbon Footprint

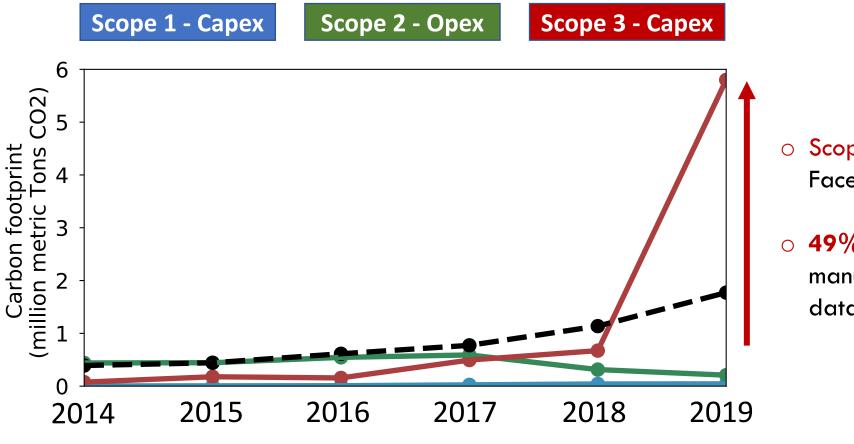
Greenhouse Gas (GHG) Protocol

Scope 1 (Capex)

Direct emission from facilities
Diesel, gas, refrigerant
Transport owned by Facebook

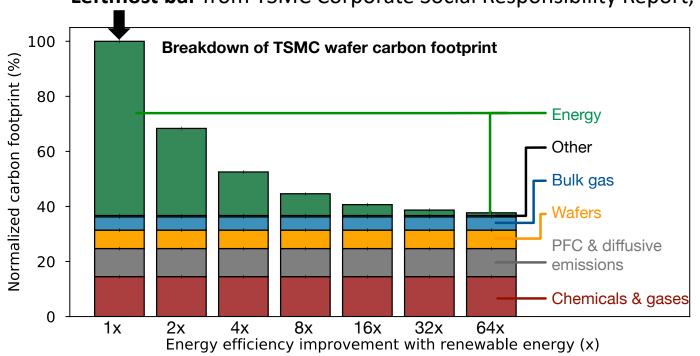

Scope 2 (Opex)

Operation-related emission Emissions from electricity & heat


Scope 3 (Capex)

Hardware and racks
Data center construction
Purchased Goods, Business travel
Transportation and distribution

Facebook Datacenters' Carbon Footprint


Facebook Datacenters' Carbon Footprint

- Scope 3 (capex) dominates
 Facebook's carbon emissions.
- 49% of Scope 3 come from HW manufacturing, infrastructure and data center construction

Semiconductor Manufacturing

Leftmost bar from TSMC Corporate Social Responsibility Report, 2018

** TSMC 5nm fab in Tainan Science Park

TSMC fab operation

- 5nm: 720MW = 6.3 billion kWh annually
- **3nm**: 880MW = **7.7 billion kWh** annually
- 3nm = ~730,000 household consumption

Carbon footprint of TSMC's wafer manufacturing process

- 63% comes from energy consumption which renewable energy can reduce
- By 2025, TSMC plans to power **20%** of the electricity using renewable energy to drive upcoming 3nm fab.

FACEBOOK AI

Architecture **Synthesis Packaging** Simulation PV signoff SPICE P&R

Design Methodology to Include Carbon Footprint

- IC and packaging tools
- Report Opex for
 - Design tools themselves
 - Chip functional operations
- Report Capex for fabrication
- PPA + Carbon = Low-Carb PPA

Carbon-aware Resource Provisioning e.g., Exploiting (EDA) Cloud Heterogeneity

Google Cloud Platform

Amazon Web Services

Microsoft Azure

Country

Hong Kong

Singapore

USA

City

Wan Chai

Singapore

Des Moines

gCO2e/kWh

702

419

736.6

367.8

367.8

240.6

568.2

460.4

617

569

516

516

205 802

805

920

920

920

69.3

20 623

623

297.6

297.6

517

517

105

105

900

900

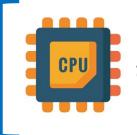
1009

1009

Stellenbosch

0009.0 0.000.1 1001				1 11110.—011 11 010 001 11000			
Region	Country	City	Estimated gCO2e/kWh)	Region	Country	City	gCO2e/kWh
asia-east1 asia-east2 asia-northeast1 asia-northeast2 asia-south1 asia-southeast1 australia-southeast1	Taiwan China Japan Japan India Singapore Australia	Changhua County Hong Kong Tokyo Osaka Mumbai Jurong West Sydney	557 702 516 516 920 419 802	us-east-2 us-east-1 us-west-1 us-west-2 ap-east-1 ap-south-1 ap-northeast-3	USA USA USA USA China India Japan	Columbus Ashburn San Francisco Portland Hong Kong Mumbai Osaka	568.2 367.8 240.6 297.6 702 920 516
europe-west1 europe-west2 europe-west3	Finland Belgium United Kingdom Germany	Hamina St. Ghislain London Frankfurt Eemshaven	211 267 623 615	ap-northeast-2 ap-southeast-1 ap-southeast-2 ap-northeast-1 ca-central-1	South Korea Singapore Australia Japan Canada	Seoul Singapore Sydney Tokyo Montreal	517 419 802 516 20
europe-west4 europe-west6 northamerica-northeast1 southamerica-east1 us-central1 us-east1	Netherlands Switzerland Canada Brazil USA USA	Zürich Montréal São Paulo Council Bluffs Moncks Corner	569 16 20 205 566.3 367.8	cn-north-1 cn-northwest-1 eu-central-1 eu-west-1 eu-west-2	China China Germany Ireland United Kingdom	Beijing Zhongwei Frankfurt am Main Dublin London	680 680 615 617 623
us-east4 us-west1 us-west2	USA USA USA	Ashburn The Dalles Los Angeles	367.8 297.6 240.6	eu-west-3 eu-north-1 sa-east-1 us-gov-east-1 us-gov-west-1	France Sweden Brazil USA USA	Paris Stockholm Sao Paulo Dublin Seattle	105 47 205 568.2 297.6

South Africa


Region

eastasia southeastasia

centralus

southafricawest

Disruptive Energy-Efficient Technologies

Deep Learning with Coherent Nanophotonic Circuits

Yichen Shen^{1*}, Nicholas C. Harris^{1*}, Scott Skirlo¹, Mihika Prabhu¹, Tom Baehr-Jones², Michael Hochberg², Xin Sun³, Shijie Zhao⁴, Hugo Larochelle⁵, Dirk Englund¹, and Marin Soljačić¹

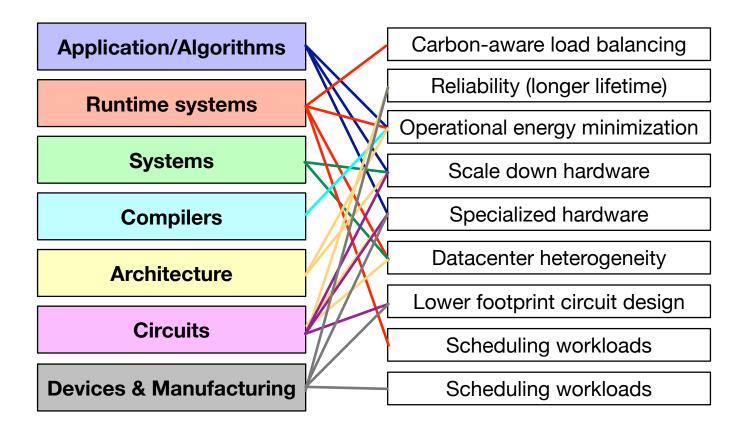
¹Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
²Coriant Advanced Technology, 171 Madison Avenue, Suite 1100, New York, NY 10016, USA
³Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁴Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁵Twitter Inc., 141 Portland St, Cambridge, MA 02139, USA
*These authors contributed equally to this work.

Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor.

In Nature Photonics

LIGHTMATTER

LIGHTELLIGECE


LIGHTON

OPTALYSUS

FATHOM COMPUTING

- 10,000x improvement in latency for matrix multiply
- Energy at the atto-joule level (10⁻¹⁸)
- 5G will enable more offloading to datacenters
- Eco-friendly, speaking of carbon footprint

Looking Ahead

Addressing computing's carbon footprint requires **cross-layer optimizations** across the computing stack.

FACEBOOK AI

facebook